GRAMMAR SUMMARY

THE DEFINITE ARTICLE ("the")

		masculine	feminine	neuter
singul	ar			
nom.	subject	ò	$\dot{\eta}$	au o
acc.	object	τον	$ au\eta u$	au o
gen.	of, 's	του	της	του
dat.	to, for, by, with	au arphi	$ au\eta$	au arphi
plural				
nom.		οί	αί	au lpha
acc.		τους	τας	au lpha
gen.		$ au\omega v$	$ au\omega v$	$ au\omega v$
dat.		τοις	ταις	τοις

Nouns in the vocative case are usually preceded by $\dot{\omega}$ (O).

NOUNS

Nouns – 1st declension, feminine

	νικη victory	χωρα country	θαλασσα sea
singular	viciory	country	ben
nom. voc.	νικη	χωρα	θαλασσα
acc.	νικην	χωραν	θαλασσαν
gen.	νικης	χωρας	θαλασσης
dat.	νικη	χωρα	θαλασση
plural			
nom. voc.	νικαι	χωραι	θαλασσαι
acc.	νικας	χωρας	θαλασσας
gen.	νικων	χωρων	θαλασσων
dat.	νικαις	χωραις	θαλασσαις

In this book, all 1st declension feminine nouns ending in $-\alpha$ change endings like $\chi\omega\rho\alpha$ except for $\theta\alpha\lambda\alpha\sigma\sigma\alpha$ whose genitive ($\theta\alpha\lambda\alpha\sigma\sigma\eta$ s) and dative singular forms ($\theta\alpha\lambda\alpha\sigma\sigma\eta$) are slightly different.

Nouns – 1st declension, masculine

	κριτης	νεανιας
	judge	young man
singular		
nom.	κριτης	νεανιας
voc.	κριτα	νεανια
acc.	κριτην	νεανιαν
gen.	κριτου	νεανιου
dat.	κριτη	νεανια
plural		
nom. voc.	κριται	νεανιαι
acc.	κριτας	νεανιας
gen.	κριτων	νεανιων
dat.	κριταις	νεανιαις

In this book, you will not meet any other 1st declension nouns ending in $-\alpha \varsigma$ apart from $v \varepsilon \alpha v \iota \alpha \varsigma$.

Nouns – 2nd declension

	λογο ς word (m.)	$\delta\omega ho v$ gift (n.)
singular		
nom.	λογος	δωρον
VOC.	λογε	δωρον
acc.	λογον	δωρον
gen.	λογου	δωρου
dat.	λογφ	δωρφ
plural		_
nom. voc.	λογοι	δωρα
acc.	λογους	δωρα
gen.	λογων	δωρων
dat.	λογοις	δωροις

The following 2^{nd} declension nouns end in $-o_{\varsigma}$ and are **feminine** in gender: $\beta_{l}\beta_{l}\delta_{0\varsigma}$ book, $\delta\delta_{0\varsigma}$ road, way, $v\eta\sigma_{0\varsigma}$ island and $v\sigma\sigma_{0\varsigma}$ disease.

Nouns – 3rd declension, consonant stems

	φυλαξ	πατηρ	σωμα
	guard (m.)	father (m.)	body (n.)
singular			
nom.	φυλαξ	πατηρ	$\sigma \omega \mu \alpha$
voc.	φυλαξ	πατερ	$\sigma \omega \mu \alpha$
acc.	φυλακα	πατερα	$\sigma \omega \mu \alpha$
gen.	φυλακος	πατρος	σωματος
dat.	φυλακι	πατρι	σωματι
plural			
	had aware		
nom. voc.	φυλακες	πατερες	σωματα
acc.	φυλακας	πατερας	σωματα
gen.	φυλακων	πατερων	σωματων
dat.	φυλαξι(ν)	πατρασι(ν)	σωμασι(ν)

You can find the stem of a 3^{rd} declension noun by removing $-o\varsigma$ from its genitive singular form.

All 3^{rd} declension nouns with consonant stems in this book change endings like $\phi \upsilon \lambda \alpha \xi$ except for the following:

Going like σωμα:	
Going like $\pi \alpha \tau \eta \rho$:	θυγατηρ daughter, μητηρ mother.

 $\pi \nu \rho$ (n.) *fire* has genitive singular $\pi \nu \rho \rho s$, dative singular $\pi \nu \rho \iota$ and no plural.

Nouns – 3rd declension, vowel and diphthong stems

$\pi o \lambda i \mathbf{s}$	$\beta \alpha \sigma i \lambda \epsilon \upsilon \varsigma$ king (m.)
πολις	βασιλευς
πολι	βασιλευ
πολιν	βασιλεα
πολεως	βασιλεως
πολει	βασιλει
πολεις	βασιλεις/ -ης
πολεις	βασιλεας
πολεων	βασιλεων
πολεσι(v)	βασιλευσι(v)
	city (f.) πολις πολι πολιν πολεως πολεις πολεις πολεις πολεων

The following GCSE noun changes endings like $\beta \alpha \sigma i \lambda \epsilon \upsilon s$:

 $i\pi\pi\varepsilon$ (nom. plur. $i\pi\pi\varepsilon$) horseman, (plural) cavalry.

Nouns – 3rd declension neuter nouns in -05

	$\xi \iota \phi o \mathbf{S}$ sword (n.)
singular	<i>(</i> - 1
nom. voc. acc.	ξιφος
gen.	ξιφους
dat.	ξιφει
plural	
nom. voc. acc.	$ξι \phi \eta$
gen.	ξιφων
dat.	ξι φε σι(v)

The following GCSE nouns change endings like $\xi_i \phi_{OS}$:

έτος year, $\xi_1\phi_0$ ς sword, όρος mountain, τειχος wall.

Nouns – 3rd declension irregular nouns

	ναυς ship (f.)	Zευς Zeus (m.)	γυνη woman, wife (f.)	ύδωρ water (n.)
singular	5.00p (11)	2003 (111)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(11)
nom.	ναυς	Ζευς	γυνη	ύδωρ
voc.	ναυ	Ζευ	γυναι	ύδωρ
acc.	ναυν	Δια	γυναικα	ύδωρ
gen.	νεως	Διος	γυναικος	ύδατος
dat.	$ u\eta\iota$	Διι	γυναικι	ύδατι
plural				
nom. voc.	$v\eta \varepsilon \varsigma$	-	γυναικες	-
acc.	ναυς	-	γυναικας	-
gen.	νεων	-	γυναικων	-
dat.	ναυσι(ν)	-	γυναιξι(ν)	-

ADJECTIVES

1^{st} and 2^{nd} declension adjectives

 1^{st} and 2^{nd} declension adjectives ending in $-o_{\mathfrak{S}}$ such as $\sigma o \phi o_{\mathfrak{S}}$ and $\phi \iota \lambda \iota o_{\mathfrak{S}}$ must agree in gender, number and case with the noun that they are describing.

Their masculine form has a nominative singular in $-o_{S}$ and changes endings like $\lambda o \gamma o_{S}$.

Their neuter form has a nominative singular in -ov and changes endings like $\delta\omega\rho ov$.

Their feminine form has a nominative singular in $-\eta$ and changes endings like $\nu \iota \kappa \eta$, except for adjectives in $-\iota o\varsigma$ or $-\rho o\varsigma$. These adjectives have a feminine nominative singular in $-\iota \alpha$ or $-\rho \alpha$ and change endings like $\chi \omega \rho \alpha$.

singular	masculine	feminine	neuter
nom.	σοφος	$\sigma o \phi \eta$	σοφον
voc.	$\sigma o \phi arepsilon$	$\sigma o \phi \eta$	σοφον
acc.	$\sigma o \phi o v$	$\sigma o \phi \eta v$	σοφον
gen.	$\sigma o \phi o \upsilon$	σοφης	σοφου
dat.	$\sigma o \phi \omega$	$\sigma o \phi \eta$	$\sigma o \phi \omega$
plural			
nom. voc.	σοφοι	σοφαι	$\sigma o \phi \alpha$
acc.	σοφους	σοφας	σοφα
gen.	$\sigma o \phi \omega v$	$\sigma o \phi \omega v$	σοφων
dat.	σοφοις	σοφαις	σοφοις

$\sigma o \phi o \varsigma$ wise

φιλιος friendly

singular	masculine	feminine	neuter
nom.	φιλιος	φιλια	φιλιον
VOC.	φιλιε	φιλια	φιλιον
acc.	φιλιον	φιλιαν	φιλιον
gen.	φιλιου	φιλιας	φιλιου
dat.	φιλιφ	φιλια	φιλιდ
plural			
nom. voc.	φιλιοι	φιλιαι	φιλια
acc.	φιλιους	φιλιας	φιλια
gen.	φιλιων	φιλιων	φιλιων
dat.	φιλιοις	φιλιαις	φιλιοις

3rd declension adjectives

ήδυς sweet

nom. $\dot{\eta}\delta \upsilon \varsigma$ $\dot{\eta}\delta \varepsilon \eta$ $\dot{\eta}\delta \varepsilon \eta$ acc. $\dot{\eta}\delta \upsilon v$ $\dot{\eta}\delta \varepsilon \eta \alpha$ $\dot{\eta}\delta \upsilon$ gen. $\dot{\eta}\delta \varepsilon \sigma \varsigma$ $\dot{\eta}\delta \varepsilon \eta \alpha$ $\dot{\eta}\delta \varepsilon$ dat. $\dot{\eta}\delta \varepsilon \eta$ $\dot{\eta}\delta \varepsilon \eta$ $\dot{\eta}\delta \varepsilon \eta$ $\dot{\eta}\delta \varepsilon \sigma \varsigma$ hural nom. voc. $\dot{\eta}\delta \varepsilon \eta \varsigma$ $(=\varepsilon + \varepsilon \varsigma)$ $\dot{\eta}\delta \varepsilon \eta \alpha$ gen. $\dot{\eta}\delta \varepsilon \sigma v$ $\dot{\eta}\delta \varepsilon \eta \omega$ $\dot{\eta}\delta \varepsilon \sigma \sigma$ dat. $\dot{\eta}\delta \varepsilon \sigma (v)$ $\dot{\eta}\delta \varepsilon \eta \omega$ $\dot{\eta}\delta \varepsilon \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \eta \varsigma$ $\dot{\eta}\delta \varepsilon \sigma (v)$ $\dot{\eta}\delta \varepsilon \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \eta \varsigma$ $\dot{\sigma} \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ voc. $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ acc. $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ acc. $\dot{\alpha}\lambda \eta \theta \sigma (=\varepsilon + \alpha)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ acc. $\dot{\alpha}\lambda \eta \theta \sigma (=\varepsilon + \alpha)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ gen. $\dot{\alpha}\lambda \eta \theta \varepsilon \eta (=\varepsilon + \alpha)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \varsigma$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \tau$ $\dot{\alpha}\lambda \eta \theta \varepsilon \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \sigma (v)$ $\dot{\alpha}\lambda \eta \theta \varepsilon \sigma (v)$ $\dot{\alpha}\mu \varepsilon v \sigma v$ $\dot{\alpha}\mu \varepsilon v \sigma \sigma v$	singular	masculine	feminine	neuter
gen. $\dot{\eta}\delta\varepsilon o_{S}$ $\dot{\eta}\delta\varepsilon i_{A}$ $\dot{\eta}\delta\varepsilon o_{S}$ dat. $\eta\delta\varepsilon i$ $\eta\delta\varepsilon i_{A}$ $\eta\delta\varepsilon i_{A}$ nom. voc. $\dot{\eta}\delta\varepsilon i_{S}$ (= $\varepsilon + \varepsilon_{S}$) $\dot{\eta}\delta\varepsilon i_{A}$ acc. $\dot{\eta}\delta\varepsilon i_{S}$ (= $\varepsilon + \varepsilon_{S}$) $\dot{\eta}\delta\varepsilon i_{A}$ gen. $\dot{\eta}\delta\varepsilon o_{I}(v)$ $\dot{\eta}\delta\varepsilon i_{A}$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta\eta_{S}$ $\dot{d}\lambda\eta\theta\varepsilon_{S}$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta (= \varepsilon + \alpha)$ $\dot{d}\lambda\eta\theta\varepsilon_{S}$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta\varepsilon_{I}$ $\dot{d}\lambda\eta\theta\varepsilon_{I}$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta\varepsilon_{I}$ $\dot{d}\lambda\eta\theta\varepsilon_{I}(=\varepsilon + \alpha)$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta\varepsilon_{I}(=\varepsilon + \alpha_{S})$ $\dot{d}\lambda\eta\theta_{I}(=\varepsilon + \alpha)$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta\varepsilon_{I}(v)$ $\dot{d}\lambda\eta\theta\varepsilon_{I}(v)$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta\varepsilon_{I}(v)$ $\dot{d}\lambda\eta\theta\varepsilon_{I}(v)$ $\dot{d}at.$ $\dot{d}\lambda\eta\theta\varepsilon_{I}(v)$ $\dot{d}\lambda\eta\varepsilon_{I}(v)$ $\dot{d}at.$ $\dot{d}\mu\varepsilon_{I}vov-\alpha$ $\dot{d}\mu\varepsilon_{I}vov$ $\dot{d}at.$ $\dot{d}\mu\varepsilon_{I}vov-\alpha$ $\dot{d}\mu\varepsilon_{I}vov-\sigma_{S}$ $\dot{d}at.$ $\dot{d}\mu\varepsilon_{I}vov-\sigma_{S}$ $\dot{d}\mu\varepsilon_{I}vov-\sigma_{S}$ $\dot{d}at.$ $\dot{d}\mu\varepsilon_{I}vov-\sigma_{S}$ $\dot{d}\mu\varepsilon_{I}vov-\alpha$ $\dot{d}at.$ $\dot{d}\mu\varepsilon_{I}vov-\sigma_{S}$ $\dot{d}\mu\varepsilon_{I}vov-\alpha$ $\dot{d}at.$ $\dot{d}\mu\varepsilon_{I}vov-\sigma_{S}$ $\dot{d}\mu\varepsilon_{I}vov-\alpha$ $\dot{d}at.$ $\dot{d}\mu\varepsilon_{I}vov-\sigma_{S}$ $\dot{d}\mu\varepsilon_{I}vov$	nom.	ήδυς	ήδεια	ή δ υ
dat. $\dot{\eta}\delta\varepsilon_{l}$ $\dot{\eta}\delta\varepsilon_{l}\alpha$ $\dot{\eta}\delta\varepsilon_{l}$ plural nom. voc. $\dot{\eta}\delta\varepsilon_{l}\varsigma (=\varepsilon + \varepsilon_{S})$ $\dot{\eta}\delta\varepsilon_{l}\alpha$ $\dot{\eta}\delta\varepsilon_{\alpha}$ acc. $\dot{\eta}\delta\varepsilon_{l}\varsigma (=\varepsilon + \alpha_{S})$ $\dot{\eta}\delta\varepsilon_{l}\alpha_{S}$ $\dot{\eta}\delta\varepsilon_{\alpha}$ gen. $\dot{\eta}\delta\varepsilon_{\alpha}v$ $\dot{\eta}\delta\varepsilon_{l}\alpha_{S}$ $\dot{\eta}\delta\varepsilon_{\alpha}$ dat. $\dot{\eta}\delta\varepsilon\sigma_{l}(v)$ $\dot{\eta}\delta\varepsilon_{l}\alpha_{S}$ $\dot{\eta}\delta\varepsilon\sigma_{l}(v)$ $\dot{\alpha}\lambda\eta\theta\eta\varsigma$ true singular masc. / fem. neuter nom. $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ acc. $\dot{\alpha}\lambda\eta\theta\eta (=\varepsilon + \alpha)$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ acc. $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon + \alpha)$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon_{S} (=\varepsilon + \varepsilon_{S})$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S} (=\varepsilon + \varepsilon_{S})$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{I} (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\sigma_{I} (=\varepsilon + \alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon_{I} (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\sigma_{I} (=\varepsilon + \alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma(v)$ $\dot{\alpha}\mu\varepsilon_{I}vov$ better singular masc. / fem. neuter nom. voc. $\dot{\alpha}\mu\varepsilon_{I}vov$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma(v)$ $\dot{\alpha}\mu\varepsilon_{I}vov$ $\dot{\alpha}\mu\varepsilon_{I}vov$ acc. $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ $\dot{\alpha}\mu\varepsilon_{I}vov$ acc. $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ acc. $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ acc. $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ gen. $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ acc. $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$ gen. $\dot{\alpha}\mu\varepsilon_{I}vov - \omega $ $\dot{\alpha}\mu\varepsilon_{I}vov - \alpha$	acc.		ήδειαν	ή δ υ
plural nom. voc. $\dot{\eta}\delta\varepsilon_{IS} (= \varepsilon + \varepsilon_{S})$ $\dot{\eta}\delta\varepsilon_{Ial}$ $\dot{\eta}\delta\varepsilon_{a}$ acc. $\dot{\eta}\delta\varepsilon_{IS} (= \varepsilon + \alpha_{S})$ $\dot{\eta}\delta\varepsilon_{Ias}$ $\dot{\eta}\delta\varepsilon_{a}$ gen. $\dot{\eta}\delta\varepsilon_{a}$ $\dot{\eta}\delta\varepsilon_{a}$ $\dot{\eta}\delta\varepsilon_{a}$ dat. $\dot{\eta}\delta\varepsilon_{a}$ $\dot{\eta}\delta\varepsilon_{a}$ $\dot{\eta}\delta\varepsilon_{a}$ masc. / fem.neuternom. $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ voc. $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ acc. $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon + \alpha)$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon_{I} (= \varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\sigma(=\varepsilon + \alpha_{S})$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{IS} (= \varepsilon + \varepsilon_{S})$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon + \alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon_{IS} (= \varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon + \alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon_{IS} (= \varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{IS} (= \varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{IV}$ $\dot{\alpha}\lambda\eta\varepsilon_{IV}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{IV}$ $\dot{\alpha}\lambda\eta\varepsilon_{IV}$ gen. $\dot{\alpha}\mu\varepsilon_{IV}$ $\dot{\alpha}\mu\varepsilon_{IV}$ gen	gen.	ήδεος		
nom. voc. $\dot{\eta}\delta \varepsilon_{1}\varsigma (=\varepsilon + \varepsilon_{S})$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{1}$ $\dot{\eta}\delta\varepsilon_{\alpha}$ acc. $\dot{\eta}\delta\varepsilon_{1}\varsigma (=\varepsilon + \alpha_{S})$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{S}$ $\dot{\eta}\delta\varepsilon_{\alpha}$ gen. $\dot{\eta}\delta\varepsilon_{\omega}v$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{S}$ $\dot{\eta}\delta\varepsilon_{\omega}v$ dat. $\dot{\eta}\delta\varepsilon\sigma_{1}(v)$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{1}\varsigma$ $\dot{\eta}\delta\varepsilon\sigma_{1}(v)$ $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ voc. $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ acc. $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ gen. $\dot{\alpha}\lambda\eta\theta_{0}\varsigma (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\sigma_{1}(=\varepsilon + \alpha_{S})$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\eta_{1} (=\varepsilon + \alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\eta_{1} (=\varepsilon + \alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{2} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{2} (v)$ $\dot{\alpha}\lambda\eta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\omega_{V}$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\omega_{1} (v)$ $\dot{\alpha}\mu\varepsilon_{1} (v)$ $$	dat.	ήδει	ήδει $lpha$	ήδει
nom. voc. $\dot{\eta}\delta \varepsilon_{1}\varsigma (=\varepsilon + \varepsilon_{S})$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{1}$ $\dot{\eta}\delta\varepsilon_{\alpha}$ acc. $\dot{\eta}\delta\varepsilon_{1}\varsigma (=\varepsilon + \alpha_{S})$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{S}$ $\dot{\eta}\delta\varepsilon_{\alpha}$ gen. $\dot{\eta}\delta\varepsilon_{\omega}v$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{S}$ $\dot{\eta}\delta\varepsilon_{\omega}v$ dat. $\dot{\eta}\delta\varepsilon\sigma_{1}(v)$ $\dot{\eta}\delta\varepsilon_{1}\alpha_{1}\varsigma$ $\dot{\eta}\delta\varepsilon\sigma_{1}(v)$ $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ voc. $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ acc. $\dot{\alpha}\lambda\eta\theta\eta_{S}$ $\dot{\alpha}\lambda\eta\theta\varepsilon_{S}$ gen. $\dot{\alpha}\lambda\eta\theta_{0}\varsigma (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\sigma_{1}(=\varepsilon + \alpha_{S})$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\eta_{1} (=\varepsilon + \alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (=\varepsilon + \alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\eta_{1} (=\varepsilon + \alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{2} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon_{2} (v)$ $\dot{\alpha}\lambda\eta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\theta\omega_{V}$ $\dot{\alpha}\lambda\eta\theta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\omega_{V}$ dat. $\dot{\alpha}\lambda\eta\varepsilon_{1} (v)$ $\dot{\alpha}\lambda\eta\omega_{1} (v)$ $\dot{\alpha}\mu\varepsilon_{1} (v)$ $$	plural			
acc. $\dot{\eta} \delta \varepsilon_{13} (= \varepsilon + \alpha_{S})$ $\dot{\eta} \delta \varepsilon_{10} \alpha_{S}$ $\dot{\eta} \delta \varepsilon_{01} \alpha_{S}$ gen. $\dot{\eta} \delta \varepsilon_{01} (v)$ $\dot{\eta} \delta \varepsilon_{10} v$ $\dot{\eta} \delta \varepsilon_{01} (v)$ $\dot{\alpha} \lambda \eta \theta \eta_{S}$ $\dot{\alpha} \lambda \eta \theta \eta_{S}$ $\dot{\alpha} \lambda \eta \theta \varepsilon_{S}$ om. $\dot{\alpha} \lambda \eta \theta \eta_{S}$ $\dot{\alpha} \lambda \eta \theta \varepsilon_{S}$ voc. $\dot{\alpha} \lambda \eta \theta \eta_{S}$ $\dot{\alpha} \lambda \eta \theta \varepsilon_{S}$ acc. $\dot{\alpha} \lambda \eta \theta \eta (= \varepsilon + \alpha)$ $\dot{\alpha} \lambda \eta \theta \varepsilon_{S}$ gen. $\dot{\alpha} \lambda \eta \theta \varepsilon_{15} (= \varepsilon + \varepsilon_{S})$ $\dot{\alpha} \lambda \eta \theta \sigma_{10} (= \varepsilon + \alpha)$ acc. $\dot{\alpha} \lambda \eta \theta \varepsilon_{15} (= \varepsilon + \varepsilon_{S})$ $\dot{\alpha} \lambda \eta \theta \eta (= \varepsilon + \alpha)$ gen. $\dot{\alpha} \lambda \eta \theta \varepsilon_{15} (= \varepsilon + \alpha_{S})$ $\dot{\alpha} \lambda \eta \theta \sigma_{10} (= \varepsilon + \alpha)$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon_{15} (= \varepsilon + \alpha_{S})$ $\dot{\alpha} \lambda \eta \theta \sigma_{10} (= \varepsilon + \alpha)$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon_{15} (= \varepsilon + \alpha_{S})$ $\dot{\alpha} \lambda \eta \theta \sigma_{10} (v)$ $\dot{\alpha} \mu \varepsilon_{10} v v$ $\dot{\alpha} \lambda \eta \theta \varepsilon_{10} (v)$ $\dot{\alpha} \lambda \eta \theta \varepsilon_{10} (v)$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ gen. $\dot{\alpha} \lambda \eta \theta \varepsilon_{10} (v) - \alpha$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ gen. $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha_{S}$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha_{S}$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha_{S}$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$ $\dot{\alpha} \mu \varepsilon_{10} v v - \alpha$	•	$\dot{\eta}\delta\varepsilon\iota\varsigma$ (= ε + $\varepsilon\varsigma$)	<i>ήδειαι</i>	$\dot{\eta}\delta$ ε $lpha$
gen. $\dot{\eta} \delta \varepsilon \omega v$ dat. $\dot{\eta} \delta \varepsilon \omega (v)$ $\dot{\eta} \delta \varepsilon \omega v$ $\dot{\eta} \delta \varepsilon \omega v$ $\dot{\eta} \delta \varepsilon \omega v$ $\dot{\alpha} \lambda \eta \theta \varepsilon \omega v$ $\dot{\eta} \delta \varepsilon \omega (v)$ $\dot{\alpha} \lambda \eta \theta \eta \varepsilon \omega v$ $\dot{\alpha} \lambda \eta \theta \varepsilon \omega v$ nom. $\dot{\alpha} \lambda \eta \theta \eta s$ $\dot{\alpha} \lambda \eta \theta \varepsilon s$ $\dot{\alpha} \lambda \eta \theta \varepsilon s$ voc. $\dot{\alpha} \lambda \eta \theta \eta s$ $\dot{\alpha} \lambda \eta \theta \varepsilon s$ $\dot{\alpha} \lambda \eta \theta \varepsilon s$ acc. $\dot{\alpha} \lambda \eta \theta \omega v$ $\dot{\alpha} \lambda \eta \theta \varepsilon t$ $\dot{\alpha} \lambda \eta \theta \varepsilon t$ plural $\alpha \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t$ gen. $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ gen. $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} \lambda \eta \theta \varepsilon t s$ $\dot{\alpha} dat.\dot{\alpha} \lambda \eta \theta \varepsilon t v \omega v\dot{\alpha} \lambda \eta \theta \varepsilon t v v\dot{\alpha} \lambda \eta \theta \varepsilon t v v\dot{\alpha} dat.\dot{\alpha} \lambda \eta \theta \varepsilon t v \omega v\dot{\alpha} \lambda \eta \theta \varepsilon t v v\dot{\alpha} \lambda \eta \theta \varepsilon t v v\dot{\alpha} dat.\dot{\alpha} \lambda \eta \theta \varepsilon t v v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v\dot{\alpha} \mu \varepsilon t v \omega v\dot{\alpha} dat.\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} dat.\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} dat.\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} dat.\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} \mu \varepsilon t v \omega v - \alpha\dot{\alpha} dat.\dot{\alpha} \mu \varepsilon t v \omega v - \alpha$	acc.			
dat. $\dot{\eta} \delta \varepsilon \sigma l(v)$ $\dot{\eta} \delta \varepsilon \tau \alpha l \varsigma$ $\dot{\eta} \delta \varepsilon \sigma l(v)$ $\dot{\alpha} \lambda \eta \theta \eta \varsigma$ $\dot{\alpha} \lambda \eta \theta \eta \varsigma$ $\dot{\alpha} \lambda \eta \theta \varepsilon \varsigma$ nom. $\dot{\alpha} \lambda \eta \theta \eta \varsigma$ $\dot{\alpha} \lambda \eta \theta \varepsilon \varsigma$ voc. $\dot{\alpha} \lambda \eta \theta \eta \varsigma$ $\dot{\alpha} \lambda \eta \theta \varepsilon \varsigma$ acc. $\dot{\alpha} \lambda \eta \theta \eta (= \varepsilon + \alpha)$ $\dot{\alpha} \lambda \eta \theta \varepsilon \varsigma$ gen. $\dot{\alpha} \lambda \eta \theta \varepsilon l \varsigma (= \varepsilon + \sigma \varsigma)$ $\dot{\alpha} \lambda \eta \theta \sigma l \varsigma (= \varepsilon + \sigma \varsigma)$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon l \varsigma (= \varepsilon + \varepsilon \varsigma)$ $\dot{\alpha} \lambda \eta \theta \eta (= \varepsilon + \alpha)$ acc. $\dot{\alpha} \lambda \eta \theta \varepsilon l \varsigma (= \varepsilon + \alpha \varsigma)$ $\dot{\alpha} \lambda \eta \theta \eta (= \varepsilon + \alpha)$ gen. $\dot{\alpha} \lambda \eta \theta \varepsilon \sigma l (v)$ $\dot{\alpha} \lambda \eta \theta \omega v$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon \sigma l (v)$ $\dot{\alpha} \lambda \eta \theta \varepsilon \sigma l (v)$ $\dot{\alpha} \mu \varepsilon l v \omega v$ $\dot{\alpha} \mu \varepsilon l v \omega v$ $\dot{\alpha} \mu \mu \varepsilon v \omega v$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon \sigma l (v)$ $\dot{\alpha} \mu \mu \varepsilon v \omega v$ dat. $\dot{\alpha} \lambda \eta \theta \varepsilon \sigma l (v)$ $\dot{\alpha} \mu \mu \varepsilon \sigma l (v)$ $\dot{\alpha} \mu \varepsilon l v \omega v$ $\dot{\alpha} \mu \varepsilon l v \omega v$ $\dot{\alpha} \mu \varepsilon l v \omega v$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ gen. $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ dat. $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ gen. $\dot{\alpha} \mu \varepsilon l v \omega v - \varepsilon \varsigma$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ gen. $\dot{\alpha} \mu \varepsilon l v \omega v - \varepsilon \varsigma$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ gen. $\dot{\alpha} \mu \varepsilon l v \omega v - \varepsilon \varsigma$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ gen. $\dot{\alpha} \mu \varepsilon l v \omega v - \varepsilon \varsigma$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$ gen. $\dot{\alpha} \mu \varepsilon l v \omega v - \omega \varsigma$ $\dot{\alpha} \mu \varepsilon l v \omega v - \alpha$	gen.			
singular nom.masc. / fem. $\dot{\alpha}\lambda\eta\theta\eta$ sneuter $\dot{\alpha}\lambda\eta\theta\varepsilon$ s $\dot{\alpha}\lambda\eta\theta\varepsilon$ s $\dot{\alpha}\lambda\eta\theta\varepsilon$ s acc.neuter $\dot{\alpha}\lambda\eta\theta\varepsilon$ s $\dot{\alpha}\lambda\eta\theta\varepsilon$ s $\dot{\alpha}\lambda\eta\theta\varepsilon$ s gen. $\dot{\alpha}\lambda\eta\theta$ (= $\varepsilon + \alpha$) $\dot{\alpha}\lambda\eta\theta\omega$ s (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\omega$ s (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\varepsilon$ s (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\omega$ s (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\varepsilon$ s (= $\varepsilon + \alpha$) $\dot{\alpha}\lambda\eta\theta$ (= $\varepsilon + \alpha$) acc. $\dot{\alpha}\lambda\eta\theta\varepsilon$ s (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta$ (= $\varepsilon + \alpha$) $\dot{\alpha}\lambda\eta\theta$ (= $\varepsilon + \alpha$) gen. $\dot{\alpha}\lambda\eta\theta\varepsilon$ s (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ dat.neutersingular nom. voc.masc. / fem. $\dot{\alpha}\mu\varepsilon$ (v)neuter $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v)neuterplural acc. $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v)singular acc.masc. / fem. $\dot{\alpha}\mu\varepsilon$ (v)neuter $\dot{\alpha}\mu\varepsilon$ (v)plural nom. voc. $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v)plural nom. voc. $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v)plural nom. voc. $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v) $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ (v)	-			
nom. $\dot{\alpha}\lambda\eta\theta\eta\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ acc. $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ gen. $\dot{\alpha}\lambda\eta\thetaous(=\varepsilon+os)$ $\dot{\alpha}\lambda\eta\thetaous(=\varepsilon+os)$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota$ $\dot{\alpha}\lambda\eta\eta\varepsilon\iota$ pluralnom. voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iotas(=\varepsilon+\varepsilon\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iotas(=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon\iotas(v)$ $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\iotas(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\iota(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\iota(v)$ cacc. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov$ $\dot{\alpha}\mu\varepsilon\iotavov$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ dat. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$		ἀληθη	s true	
nom. $\dot{\alpha}\lambda\eta\theta\eta\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ acc. $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\varsigma$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota (=\varepsilon+\sigma\varsigma)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\iota (=\varepsilon+\sigma\varsigma)$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota (=\varepsilon+\varepsilon\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ nom. voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota (=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota (=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota (v)$ $\dot{\alpha}\lambda\eta\theta$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota (v)$ $\dot{\alpha}\lambda\eta\theta$ $\dot{\alpha}\iota (v)$ $\dot{\alpha}\mu\varepsilon\iota vov$ $\dot{\alpha}\mu\varepsilon\iota vov$ dat. $\dot{\alpha}\lambda\eta\varepsilon\iota (v)$ $\dot{\alpha}\mu\varepsilon\iota vov$ $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$ $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$ $\dot{\alpha}\mu\varepsilon\iota vov$ gen. $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$ $\dot{\alpha}\mu\varepsilon\iota vov-\sigma\varsigma$ $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$ $\dot{\alpha}\mu\varepsilon\iota vov-\sigma\varsigma$ $\dot{\alpha}\mu\varepsilon\iota vov-\sigma\varsigma$ $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$ $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$ $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iota vov-\varepsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iota vov-\alpha$	singular	mase / fem		neuter
voc. $\dot{\alpha}\lambda\eta\theta\varepsilon$ $\dot{\alpha}\lambda\eta\theta\varepsilon$ $\dot{\alpha}\lambda\eta\theta\varepsilon$ acc. $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$) $\dot{\alpha}\lambda\eta\theta\varepsilon$ gen. $\dot{\alpha}\lambda\eta\thetaous$ (= $\varepsilon + \alpha$) $\dot{\alpha}\lambda\eta\thetaous$ (= $\varepsilon + \alpha$)dat. $\dot{\alpha}\lambda\eta\theta\varepsilon$ $\dot{\alpha}\lambda\eta\theta\varepsilon$ plural $\dot{\alpha}\lambda\eta\theta\varepsilon$ $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$)acc. $\dot{\alpha}\lambda\eta\theta\varepsilon$ $\dot{\alpha}\lambda\eta\theta$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon$ $\dot{\alpha}\lambda\eta\theta$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon$ $\dot{\alpha}\lambda\eta\theta$ $\dot{\alpha}$ $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\lambda\eta$ $\dot{\alpha}$ $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}\mu\varepsilon$ $\dot{\alpha}$ $\dot{\alpha}\mu\varepsilon$ <	5			•
acc. $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$) $\dot{\alpha}\lambda\eta\theta\varepsilon$ sgen. $\dot{\alpha}\lambda\eta\thetaous$ (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\thetaous$ (= $\varepsilon + \alpha$ s)dat. $\dot{\alpha}\lambda\eta\theta\varepsilon$ i $\dot{\alpha}\lambda\eta\theta$ iplural $\dot{\alpha}\lambda\eta\theta\varepsilon$ i $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$)nom. voc. $\dot{\alpha}\lambda\eta\theta\varepsilon$ is (= $\varepsilon + \varepsilon$ s) $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$)acc. $\dot{\alpha}\lambda\eta\theta\varepsilon$ is (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$)gen. $\dot{\alpha}\lambda\eta\theta\varepsilon$ is (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$)dat. $\dot{\alpha}\lambda\eta\theta\varepsilon$ is (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$)gen. $\dot{\alpha}\lambda\eta\theta\varepsilon$ is (= $\varepsilon + \alpha$ s) $\dot{\alpha}\lambda\eta\theta$ is (v) $\dot{\alpha}\mu\varepsilon$ ivov better $\dot{\alpha}\lambda\eta\theta\varepsilon$ is (v) $\dot{\alpha}\lambda\eta\theta\varepsilon$ is (v) $\dot{\alpha}\mu\varepsilon$ ivov acc. $\dot{\alpha}\mu\varepsilon$ ivov acc $\dot{\alpha}\mu\varepsilon$ ivovacc. $\dot{\alpha}\mu\varepsilon$ ivov- α $\dot{\alpha}\mu\varepsilon$ ivovgen. $\dot{\alpha}\mu\varepsilon$ ivov- α $\dot{\alpha}\mu\varepsilon$ ivov- α dat. $\dot{\alpha}\mu\varepsilon$ ivov- α $\dot{\alpha}\mu\varepsilon$ ivov- α gen. $\dot{\alpha}\mu\varepsilon$ ivov- α s $\dot{\alpha}\mu\varepsilon$ ivov- α				
gen. $\dot{\alpha}\lambda\eta\theta\upsilon\varsigma(=\varepsilon+o\varsigma)$ $\dot{\alpha}\lambda\eta\theta\upsilon\varsigma(=\varepsilon+o\varsigma)$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota$ $\dot{\alpha}\lambda\eta\theta\varepsilon\iota$ plural nom. voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\varepsilon\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(v)$ $\dot{\alpha}\lambda\eta\theta$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\lambda\eta\theta$ gen. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ dat.masc. / fem. $\dot{\alpha}\mu\varepsilon\iotavov$ neutersingular nom. voc.masc. / fem. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ neuter $\dot{\alpha}\mu\varepsilon\iotavov$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ dat. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ glural nom. voc. $\dot{\alpha}\mu\varepsilon\iotavov-\varepsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\omegav$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$				•
dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota$ $\dot{\alpha}\lambda\eta\theta\varepsilon\iota$ $\dot{\alpha}\lambda\eta\theta\varepsilon\iota$ plural nom. voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iotas(=\varepsilon+\varepsilon s)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iotas(=\varepsilon+\alpha s)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\mu\varepsilon\iotav\omegav$ bettersingular nom. voc.masc. / fem. $\dot{\alpha}\mu\varepsilon\iotav\omegav$ neuter $\dot{\alpha}\mu\varepsilon\iotavov$ singular oc.masc. / fem. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ neuter 				•
nom. voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\varepsilon\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\mu\varepsilon\iotav\omegav$ bettersingularneuternom. voc. $\dot{\alpha}\mu\varepsilon\iotav\omegav$ $\dot{\alpha}\mu\varepsilon\iotavov$ acc. $\dot{\alpha}\mu\varepsilon\iotav\omegav-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ dat. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$	•			
nom. voc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\varepsilon\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ acc. $\dot{\alpha}\lambda\eta\theta\varepsilon\iota\varsigma(=\varepsilon+\alpha\varsigma)$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\mu\varepsilon\iotav\omegav$ bettersingularneuternom. voc. $\dot{\alpha}\mu\varepsilon\iotav\omegav$ $\dot{\alpha}\mu\varepsilon\iotavov$ acc. $\dot{\alpha}\mu\varepsilon\iotav\omegav-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ dat. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\sigma\varsigma$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon\iotavov-\epsilon\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha\varsigma$ $\dot{\alpha}\mu\varepsilon\iotavov-\alpha$	plural			
acc. $\dot{\alpha}\lambda\eta\theta\varepsilon_{IS}(=\varepsilon+\alpha_{S})$ $\dot{\alpha}\lambda\eta\theta\eta(=\varepsilon+\alpha)$ gen. $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ $\dot{\alpha}\lambda\eta\theta\omegav$ dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma_{I}(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma_{I}(v)$ $\dot{\alpha}\mu\varepsilon_{IV}\omegav$ $\dot{\alpha}\mu\varepsilon_{IV}\omegav$ $\dot{\alpha}\mu\varepsilon_{IV}ov$ singularmasc. / fem.neuternom. voc. $\dot{\alpha}\mu\varepsilon_{IV}\omegav$ $\dot{\alpha}\mu\varepsilon_{IV}ov$ acc. $\dot{\alpha}\mu\varepsilon_{IV}ov-\alpha$ $\dot{\alpha}\mu\varepsilon_{IV}ov$ gen. $\dot{\alpha}\mu\varepsilon_{IV}ov-os$ $\dot{\alpha}\mu\varepsilon_{IV}ov-os$ dat. $\dot{\alpha}\mu\varepsilon_{IV}ov-i$ $\dot{\alpha}\mu\varepsilon_{IV}ov-a$ pluralnom. voc. $\dot{\alpha}\mu\varepsilon_{IV}ov-\alphas$ acc. $\dot{\alpha}\mu\varepsilon_{IV}ov-\alphas$ $\dot{\alpha}\mu\varepsilon_{IV}ov-\alpha$ gen. $\dot{\alpha}\mu\varepsilon_{IV}ov-\omegav$ $\dot{\alpha}\mu\varepsilon_{IV}ov-\omegav$	-	$\dot{\alpha}\lambda\eta\theta\varepsilon$ is (= $\varepsilon + \varepsilon_{\rm S}$)		$\dot{\alpha}\lambda\eta\theta\eta$ (= $\varepsilon + \alpha$)
gen. $\dot{a}\lambda\eta\theta\omega\nu$ $\dot{a}\lambda\eta\theta\omega\nu$ dat. $\dot{a}\lambda\eta\theta\varepsilon\sigma\iota(\nu)$ $\dot{a}\lambda\eta\theta\varepsilon\sigma\iota(\nu)$ $\dot{a}\mu\epsilonιν\omega\nu$ $\dot{a}\lambda\eta\theta\epsilon\sigma\iota(\nu)$ $\dot{a}\mu\epsilonιν\omega\nu$ $\dot{a}\mu\epsilonι\nu\nu$ singularmasc. / fem.neuternom. voc. $\dot{a}\mu\epsilonι\nu\omega\nu$ $\dot{a}\mu\epsilonινo\nu$ acc. $\dot{a}\mu\epsilonινoν-\alpha$ $\dot{a}\mu\epsilonινo\nu$ gen. $\dot{a}\mu\epsilonινoν-os$ $\dot{a}\mu\epsilonινov-os$ dat. $\dot{a}\mu\epsilonινov-i$ $\dot{a}\mu\epsilonινov-a$ plural $\dot{a}\mu\epsilonινov-as$ $\dot{a}\mu\epsilonινov-\alpha$ nom. voc. $\dot{a}\mu\epsilonινov-as$ $\dot{a}\mu\epsilonινov-\alpha$ gen. $\dot{a}\mu\epsilonινov-as$ $\dot{a}\mu\epsilonινov-ax$	acc.			
dat. $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\lambda\eta\theta\varepsilon\sigma\iota(v)$ $\dot{\alpha}\mu\epsilon\iotav\omega v$ better $\dot{\alpha}\mu\epsilon\iotav\omega v$ bettersingularmasc. / fem.neuternom. voc. $\dot{\alpha}\mu\epsilon\iotav\omega v$ $\dot{\alpha}\mu\epsilon\iotavov$ acc. $\dot{\alpha}\mu\epsilon\iotavov-\alpha$ $\dot{\alpha}\mu\epsilon\iotavov$ gen. $\dot{\alpha}\mu\epsilon\iotavov-os$ $\dot{\alpha}\mu\epsilon\iotavov-os$ dat. $\dot{\alpha}\mu\epsilon\iotavov-i$ $\dot{\alpha}\mu\epsilon\iotavov-i$ plural $\dot{\alpha}\mu\epsilon\iotavov-\epsilons$ $\dot{\alpha}\mu\epsilon\iotavov-\alpha$ acc. $\dot{\alpha}\mu\epsilon\iotavov-\alphas$ $\dot{\alpha}\mu\epsilon\iotavov-\alpha$ gen. $\dot{\alpha}\mu\epsilon\iotavov-\omegav$ $\dot{\alpha}\mu\epsilon\iotavov-\omegav$	gen.			,
singularmasc. / fem.neuternom. voc. $\dot{\alpha}\mu\epsilon i v \omega v$ $\dot{\alpha}\mu\epsilon i v o v$ acc. $\dot{\alpha}\mu\epsilon i v o v - \alpha$ $\dot{\alpha}\mu\epsilon i v o v$ gen. $\dot{\alpha}\mu\epsilon i v o v - o \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - o \varsigma$ dat. $\dot{\alpha}\mu\epsilon i v o v - i$ $\dot{\alpha}\mu\epsilon i v o v - i$ plural $\dot{\alpha}\mu\epsilon i v o v - \epsilon \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$ acc. $\dot{\alpha}\mu\epsilon i v o v - \alpha \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$ gen. $\dot{\alpha}\mu\epsilon i v o v - \alpha \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$	•	$\dot{\alpha}\lambda\eta hetaarepsilon arepsilon(u)$		
nom. voc. $\dot{\alpha}\mu\epsilon i v \omega v$ $\dot{\alpha}\mu\epsilon i v o v$ acc. $\dot{\alpha}\mu\epsilon i v o v - \alpha$ $\dot{\alpha}\mu\epsilon i v o v$ gen. $\dot{\alpha}\mu\epsilon i v o v - o \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - o \varsigma$ dat. $\dot{\alpha}\mu\epsilon i v o v - i$ $\dot{\alpha}\mu\epsilon i v o v - i$ plural $\dot{\alpha}\mu\epsilon i v o v - \epsilon \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$ acc. $\dot{\alpha}\mu\epsilon i v o v - \alpha \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$ gen. $\dot{\alpha}\mu\epsilon i v o v - \omega v$ $\dot{\alpha}\mu\epsilon i v o v - \omega v$		άμεινω	v better	
acc. $\dot{\alpha}\mu\epsilon ivov-\alpha$ $\dot{\alpha}\mu\epsilon ivov$ gen. $\dot{\alpha}\mu\epsilon ivov-o\varsigma$ $\dot{\alpha}\mu\epsilon ivov-o\varsigma$ dat. $\dot{\alpha}\mu\epsilon ivov-i$ $\dot{\alpha}\mu\epsilon ivov-i$ plural $\dot{\alpha}\mu\epsilon ivov-\epsilon\varsigma$ $\dot{\alpha}\mu\epsilon ivov-\alpha$ acc. $\dot{\alpha}\mu\epsilon ivov-\alpha\varsigma$ $\dot{\alpha}\mu\epsilon ivov-\alpha$ gen. $\dot{\alpha}\mu\epsilon ivov-\omegav$ $\dot{\alpha}\mu\epsilon ivov-\omegav$	singular	masc. / fem.		
acc. $\dot{\alpha}\mu\epsilon ivov-\alpha$ $\dot{\alpha}\mu\epsilon ivov$ gen. $\dot{\alpha}\mu\epsilon ivov-o\varsigma$ $\dot{\alpha}\mu\epsilon ivov-o\varsigma$ dat. $\dot{\alpha}\mu\epsilon ivov-i$ $\dot{\alpha}\mu\epsilon ivov-i$ plural $\dot{\alpha}\mu\epsilon ivov-\epsilon\varsigma$ $\dot{\alpha}\mu\epsilon ivov-\alpha$ acc. $\dot{\alpha}\mu\epsilon ivov-\alpha\varsigma$ $\dot{\alpha}\mu\epsilon ivov-\alpha$ gen. $\dot{\alpha}\mu\epsilon ivov-\omegav$ $\dot{\alpha}\mu\epsilon ivov-\omegav$	nom. voc.	ἀμεινων		ἀμεινον
dat. $\dot{d}\mu\epsilon i vov-i$ $\dot{d}\mu\epsilon i vov-i$ plural $\dot{d}\mu\epsilon i vov-\epsilon\varsigma$ $\dot{d}\mu\epsilon i vov-\alpha$ nom. voc. $\dot{d}\mu\epsilon i vov-\epsilon\varsigma$ $\dot{d}\mu\epsilon i vov-\alpha$ acc. $\dot{d}\mu\epsilon i vov-\alpha\varsigma$ $\dot{d}\mu\epsilon i vov-\alpha$ gen. $\dot{d}\mu\epsilon i vov-\omega v$ $\dot{d}\mu\epsilon i vov-\omega v$	acc.	ἀμεινον-α		ἀμεινον
plural $\dot{\alpha}\mu\epsilon\nu ov-\epsilon\varsigma$ $\dot{\alpha}\mu\epsilon\nu ov-\alpha$ nom. voc. $\dot{\alpha}\mu\epsilon\nu ov-\epsilon\varsigma$ $\dot{\alpha}\mu\epsilon\nu ov-\alpha$ acc. $\dot{\alpha}\mu\epsilon\nu ov-\alpha\varsigma$ $\dot{\alpha}\mu\epsilon\nu ov-\alpha$ gen. $\dot{\alpha}\mu\epsilon\nu ov-\omega v$ $\dot{\alpha}\mu\epsilon\nu ov-\omega v$	gen.	, ·		ἀμεινον-ος
nom. voc. $\dot{\alpha}\mu\epsilon i v o v - \epsilon \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$ acc. $\dot{\alpha}\mu\epsilon i v o v - \alpha \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$ gen. $\dot{\alpha}\mu\epsilon i v o v - \omega v$ $\dot{\alpha}\mu\epsilon i v o v - \omega v$	dat.	• ·		ἀμεινον-ι
acc. $\dot{\alpha}\mu\epsilon i v o v - \alpha \varsigma$ $\dot{\alpha}\mu\epsilon i v o v - \alpha$ gen. $\dot{\alpha}\mu\epsilon i v o v - \omega v$ $\dot{\alpha}\mu\epsilon i v o v - \omega v$	plural			
gen. ἀμεινον-ων ἀμεινον-ων	nom. voc.	ἀμεινον-ες		ἀμεινον-α
	acc.	άμεινον-ας		άμεινον-α
dat. $\dot{\alpha}\mu\epsilon\nu\sigma\sigma(v)$ $\dot{\alpha}\mu\epsilon\nu\sigma\sigma(v)$	gen.	ἀμεινον-ων		
	dat.	άμεινοσι(ν)		άμεινοσι(ν)

Irregular adjectives

μεγα**ς** big, great

	masculine	feminine	neuter
singular			
nom.	μεγας	μεγαλ-η	μεγα
acc.	μεγαν	μεγαλ-ην	μεγα
gen.	μεγαλ-ου	μεγαλ-ης	μεγαλ-ου
dat.	μεγαλ-φ	μεγαλ-η	μεγαλ-φ
plural			
nom.	μεγαλ-οι	μεγαλ-αι	μεγαλ-α
acc.	μεγαλ-ους	μεγαλ-ας	μεγαλ-α
gen.	μεγαλ-ων	μεγαλ-ων	μεγαλ-ων
dat.	μεγαλ-οις	μεγαλ-αις	μεγαλ-οις

πολυς much, many

	masculine	feminine	neuter
singular			
nom.	πολυς	πολλ-η	πολυ
acc.	πολυν	πολλ-ην	πολυ
gen.	πολλ-ου	πολλ-ης	πολλ-ου
dat.	πολλ- $φ$	πολλ- η	πολλ- $φ$
plural			
nom.	πολλ-οι	πολλ-αι	πολλ-α
acc.	πολλ-ους	πολλ-ας	πολλ-α
gen.	πολλ-ων	πολλ-ων	πολλ-ων
dat.	πολλ-οις	πολλ-αις	πολλ-οις

$\pi \alpha s$ all, every

	masculine	feminine	neuter
singular			
nom.	πας	$\pi \alpha \sigma$ - α	$\pi \alpha v$
acc.	$\pi \alpha \nu \tau$ - α	$\pi \alpha \sigma$ - αv	$\pi \alpha v$
gen.	παντ-ος	πασ-ης	παντ-ος
dat.	παντ-ι	$\pi \alpha \sigma$ - η	$\pi\alpha\nu\tau$ - ι
plural			
nom.	παντ-ες	$\pi \alpha \sigma$ - $\alpha \iota$	$\pi \alpha \nu \tau$ - α
acc.	$\pi \alpha \nu \tau$ - $\alpha \varsigma$	$\pi \alpha \sigma$ - $\alpha \varsigma$	παντ-α
gen.	παντ-ων	$\pi \alpha \sigma$ - ωv	παντ-ων
dat.	$\pi \alpha \sigma \iota(v)$	πασ-αις	$\pi \alpha \sigma i(v)$

Comparison of adjectives

Adjectives have three degrees of comparison.

The **positive** form is the regular form that you have learnt for vocabulary tests. They usually end in $-o_{S}$ except for $\mu\epsilon\gamma\alpha_{S}$ big, great, $\pio\lambda\upsilon_{S}$ much, many and $\pi\alpha_{S}$ all, every.

The **comparative** form of the adjective ends in $-\tau \epsilon \rho \sigma_s$, $-\tau \epsilon \rho \sigma_s$, $-\tau \epsilon \rho \sigma_s$ and means (*something*)-er or more (*something*).

examples	\rightarrow	ἀνδρειος ἀνδρειο-τερος	brave braver, more brave
	\rightarrow	σοφος σοφω-τερος	wise wiser, more wise

Endings change like a regular adjective but the $-\tau\epsilon\rho$ - bit is always kept. Comparative adjectives are usually followed by $\dot{\eta}$ than or by a **genitive of comparison** where the noun being directly compared with is put into the **genitive** case, and there is no word for "than".

The **superlative** form of the adjective ends in $-\tau \alpha \tau \sigma_{S}$, $-\tau \alpha \tau \alpha$, $-\tau \alpha \tau \sigma v$ and means (*the something*)-est, most (*something*) or very (*something*).

examples	\rightarrow	ἀνδρειος ἀνδρειο-τατος	brave bravest, very brave
	\rightarrow	σοφος σοφω-τατος	wise wisest, very wise

Endings change like a regular adjective but the $-\tau \alpha \tau$ - bit is always kept.

Irregular comparison of adjectives

positive		comparative		superlative
άγαθος good		ἀμεινων		ἀριστος
	or	βελτιων		βελτιστος
κακος bad		κακιων		κακιστος
	or	χειρων		χειριστος
$\kappa \alpha \lambda o \varsigma$ beautiful		καλλιων		καλλιστος
μεγας big		μειζων		μεγιστος
\dot{o} λιγος small (amount of)		<i>έλασσων</i>		<i>έλαχιστο</i> ς
			or	<i>όλιγιστο</i> ς
ὀλιγοι few		έλασσονες		<i>έλαχιστοι</i>
πολυς much		πλε(ι)ων		πλειστος
πολλοι many		πλε(ι)ονες		πλειστοι
ραδιος easy		ράων		ράστος
ταχυς quick, fast		θασσων		ταχιστος
αίσχρος disgraceful		αἰσχιων		αἰσχιστος
έχθρος hostile		ἐχθιων		έχθιστος
$\dot{\eta}$ δυ $arsigma$ sweet, pleasant		ήδιων		ήδιστος

Adverbs

Regular adverbs are formed by adding $-\omega_S$ to a Greek adjective:

ἀνδρειως	bravely
ταχεως	quickly

A comparative adverb, meaning *more* (*something*)-ly, ends in $-\tau \varepsilon \rho ov$ or -ov:

ἀνδρειοτερον	more bravely
θασσον	more quickly

A superlative adjective, meaning most (something)-ly or very (something)-ly, ends in $-\tau \alpha \tau \alpha$ or $-\iota \sigma \tau \alpha$:

ἀνδρειοτατα	most bravely, very bravely
ταχιστα	most quickly, very quickly

When $\dot{\omega}_{S}$ is followed by a superlative adverb, it means as (something)-ly as possible:

ώς ταχιστα

as quickly as possible

Two other common GCSE comparative and superlative adverbs are:

μαλλον (ἠ)	more (than)
μαλιστα	most, very much, especially

PRONOUNS

Demonstrative adjectives and pronouns

ούτος this, these

	masculine	feminine	neuter
singular (this)			
nom.	ούτ-ο ς	αύτ-η	τουτ-ο
acc.	τουτ-ον	ταυτ-ην	τουτ-ο
gen.	τουτ-ου	ταυτ-ης	τουτ-ου
dat.	τουτ-φ	ταυτ-η	τουτ- $φ$
plural (these)			
nom.	ούτ-οι	αύτ-αι	ταυτ-α
acc.	τουτ-ους	ταυτ-ας	ταυτ-α
gen.	τουτ-ων	τουτ-ων	τουτ-ων
dat.	τουτ-οις	ταυτ-αις	τουτ-οις

$δ \delta \varepsilon$ this, these

	masculine	feminine	neuter
singular (this)			
nom.	ό-δ ε	$\dot{\pmb{\eta}}$ -δ $arepsilon$	$ au$ o- $\delta arepsilon$
acc.	τον-δε	$ au\eta$ v- \deltaarepsilon	το-δε
gen.	του-δε	$ au\eta\sigma$ - \deltaarepsilon	του-δε
dat.	$ au arphi$ - $\delta arepsilon$	τ η - $\delta arepsilon$	τ ω - $\delta arepsilon$
plural (these)			
nom.	οί-δε	αί-δε	$ au$ - $\delta arepsilon$
acc.	τουσ-δε	$ au$ $\alpha\sigma$ - $\delta\varepsilon$	$ au$ - $\delta arepsilon$
gen.	$ au\omega au$ - $\delta arepsilon$	$ au\omega au$ - $\delta arepsilon$	$ au\omega v$ - $\delta arepsilon$
dat.	τοισ-δε	ταισ-δε	τοισ-δε

έκεινος that, those

	masculine	feminine	neuter
singular (that)			
nom.	έκειν-ος	ἐκειν-η	ἐκειν-ο
acc.	ἐκειν-ον	έκειν-ην	ἐκειν-ο
gen.	έκειν-ου	ἐκειν-ης	ἐκειν-ου
dat.	ἐκειν-φ	ἐκειν-η	ἐκειν-φ
plural (those)			
nom.	ἐκειν-οι	ἐκειν-αι	ἐκειν-α
acc.	ἐκειν-ους	ἐκειν-ας	ἐκειν-α
gen.	ἐκειν-ων	ἐκειν-ων	ἐκειν-ων
dat.	ἐκειν-οις	ἐκειν-αις	ἐκειν-οις

Personal pronouns

1st and 2nd person

	first person (sing.) <i>I, me</i> (plur.) <i>we, us</i>	second person (sing.) you (plur.) you
singular		
nom. voc.	έγω	ູ
acc.	$(\dot{\epsilon})\mu\epsilon$	σε
gen.	(ἐ)μου	σου
dat.	(ἐ)μοι	σοι
plural	_	
nom. voc.	ήμεις	ύμεις
acc.	ήμας	ύμας
gen.	ήμων	ύμων
dat.	ήμιν	ύμιν

3rd person

	masculine	feminine	neuter
singular			
nom.	αὐτ-ος	αὐτ-η	αὐτ-ο
acc.	αὐτ-ον	αὐτ-ην	αὐτ-ο
gen.	αὐτ-ου	αὐτ-ης	αὐτ-ου
dat.	αὐτ- ϕ	αὐτ-η	αὐτ- $φ$
plural			
nom.	αὐτ-οι	αὐτ-αι	αὐτ-α
acc.	αὐτ-ους	αὐτ-ας	αὐτ-α
gen.	αὐτ-ων	αὐτ-ων	αὐτ-ων
dat.	αὐτ-οις	αὐτ-αις	αὐτ-οις

<u>Uses of αὐτος</u>

"him, her, it, them"	ἐπεμψα αὐτον εἰς την ἀγοραν. I sent him to the market place.
"his, her, its, their"	ὁ ἡγεμων εἰδε την στρατιαν αὐτων.
when <i>not</i> referring to the subject	The leader saw their army.
"self" – placed <u>after</u> the noun	ό στρατηγος αὐτος πιπτει. The general himself falls.
"same" – placed <u>between</u>	ό αὐτος στρατηγος πιπτει.
article and noun	The same general falls.

Reflexive pronouns

	first person myself	second person yourself	third person him/ her/ itself
singular		<i>v v</i>	U
acc.	ἐμαυτον, -ην	σεαυτον, -ην	έαυτον, -ην, -ο
gen.	ἐμαυτου, -ης	σεαυτου, -ης	έαυτου, -ης
dat.	<i>ἐμαυτ</i> φ, -η	σεαυτφ, -η	έαυτ φ , - η

plural	ourselves	yourselves	themselves
acc.	ήμας αύτους, -ας	ύμας αύτους, -ας	$\dot{\varepsilon}$ αυτους, -ας, -α
gen. dat.	ήμων αὐτων ήμιν αὐτοις, -αις	ύμων αὐτων ὑμιν αὐτοις, -αις	ἑαυτων ἑαυτοις, -αις

Relative pronoun

ốς, ἡ, ὁ who, which

singular	masculine	feminine	neuter
nom.	ဝ်ၭ	$\dot{\eta}$	ò
acc.	òv	ήν	ò
gen.	ού	ής	ού
dat.	\dot{arphi}	\dot{n}	$\dot{oldsymbol{arphi}}$
plural	_		
nom.	οί	αί	ά
acc.	ούς	άς	ά
gen.	ώv	ών	ών
dat.	οίς	αίς	οίς

τ is and τ is

This word, with an accent, is found first word in a sentence and means *who*? or *which*? Without an accent, it is never found first word in a sentence. It means, as a **pronoun**, *someone*, *something*, *anyone* or *anything* – depending on the sense – and, as an adjective, *some*, *any*, *a certain* or *one of*.

$\tau\iota \varsigma$ (stem $\tau\iota v$ -)

(pronoun) *someone/ thing, anyone/ thing* (adjective) *some, any, a certain, one of*

	masculine/ feminine	neuter
singular		
nom.	τις	au
acc.	τιν-α	au
gen.	τιν-ος	τιν-ος
dat.	<i>τιν</i> -ι	τιν-ι
plural		
nom.	τιν-ες	$\tau\iota\nu$ - $lpha$
acc.	τιν-ας	$\tau\iota\nu$ - α
gen.	τιν-ων	τιν-ων
dat.	$\tau\iota$ - $\sigma\iota(v)$	$\tau \iota$ - $\sigma \iota(v)$

PREPOSITIONS

Taking the **accusative** case:

ἀνα	ир
δια	because of, on account of
είς	to, into
έπι	against, on to, on, at
κατα	according to, by, down,
	along
μετα	after
παρα	contrary to
περι	round
προς	to, towards, against
Taking the genitive case:	
άνευ	without
ἀπο	from
δια	through
$\dot{ec{\epsilon}\kappa}$ ($\dot{ec{\epsilon}\xi}$ before a vowel)	out of, from
κατα	down
μετα	with
παρα	from
περι	about, concerning
$\pi\lambda\eta u$	except
προ	before, in front of
ύπερ	on behalf of
ύπο	by (after a passive verb)
Taking the dative case:	

Taking the **dative** case:

 $\dot{\varepsilon}v$ in, on, among

Before a rough breathing, $\dot{\epsilon}\pi\iota$ changes to $\dot{\epsilon}\phi'$, $\mu\epsilon\tau\alpha$ changes to $\mu\epsilon\theta'$ and $\dot{\upsilon}\pi\sigma$ can change to $\dot{\upsilon}\phi'$.

number		cardinal number (1, 2, 3)	ordinal number (1st, 2nd, 3rd)
1		είς, μια, έν	πρωτος
2		δυο	δευτερος
3		τρεις, τρια	τριτος
4		τεσσαρες, τεσσαρα	τεταρτος
	or	τετταρες, τετταρα	
5		πεντε	πεμπτος
6		έξ	έκτος
7		έπτα	έβδομος
8		ὀκτω	όγδοος
9		έννεα	ένατος
10		δεκα	δεκατος

CARDINAL AND ORDINAL NUMBERS

Two common compounds of ε are:

ούδεις, ούδεμια, ούδ	$\delta \varepsilon v$ (stem οὐδ εv -)	no-one, nobody, no
μηδεις, μηδεμια, μησ	δεν (stem μηδεν-)	no-one, nobody, no

These words mean *no-one, nobody* when used as a **pronoun**, and *no* when used as an **adjective**.

TIME EXPRESSIONS

To express a period of time in Greek, separate prepositions for *for*, *in*, *on*, *at* and *within* are not normally used. Instead, the time expression (number plus word for *day*, *year* etc.) are put into one of three different cases.

- Time how long (for ...) is expressed by the accusative case.
- Time when (*in*.../ *on* .../ *at*...) is expressed by the **dative** case.
- Time within is expressed by the genitive case.

Common time expressions in Greek include $\pi o \lambda v \chi \rho o v o v$ for a long time, $\tau \eta \varsigma$ voktos in the night, by night and $\chi \varepsilon \mu \omega v \circ \varsigma$ or $\tau o v \chi \varepsilon \mu \omega v \circ \varsigma$ in the winter.

QUESTION WORDS

When introducing a direct question, all of these words are placed first word in a sentence. The Greek symbol for a question mark is a semi-colon (;).

$\dot{\alpha}\rho\alpha$; (or $\dot{\alpha}\rho$ ';)	<i>is?, are?, was?</i> etc. (introduces a simple question)
ἀρα οὐ;/ ἀρ' οὐ;	surely?
άρα μη;	surely not?
δια τί;	why?
που;	where?
ποτε;	when?
πως;	how?
ποι;	where to?
ποθεν;	where from?
$\tau i \varsigma$ (plural $\tau i \nu \varepsilon \varsigma$;)	who?
$ au i$ (plural $ au i v \varepsilon \varsigma$;)	what? which?
ποιος, -η, -ον;	what sort of?
ποσος, -η, -ον;	how big? how much?
ποσοι, -αι, -α;	how many?

Indirect question words

Most of the question words asking for specific information *can* (but do not have to) add \dot{o} - onto the beginning in an in indirect question. Hence:

direct question	indirect question	meaning
ποι;	όποι	where to
ποθεν;	<i>δποθεν</i>	where from
ποτε;	όποτε	when
$\pi o \upsilon;$	όπου	where
$\pi\omega$ s;	όπως	how
ποιος, -η, -ον;	όποιος, -η, -ov	what sort of
ποσος, -η, -ον;	όποσος, -η, -ον	how big, how much
ποσοι, -αι, -α;	όποσοι, -αι, -α	how many
τίς	όστις	who
τί	ό τι	what

VERBS

Active voice of regular verbs

$\lambda \upsilon \omega I$ set free

	present	future	imperfect	weak aorist
	I release	I shall release	I was releasing	I released
singular				
1st	λυω	λυσω	ἐλυον	<i>ἐλυσ</i> α
2nd	λυεις	λυσεις	έλυες	έλυσας
3rd	λυει	λυσει	ἐλυε(ν)	ἐλυσε(ν)
plural				
1st	λυομεν	λυσομεν	ἐλυομεν	ἐλυσαμεν
2nd	λυετε	λυσετε	έλυετε	έλυσατε
3rd	λυουσι(ν)	λυσουσι(ν)	ἐλυον	έλυσαν

To form their imperfect and weak aorist tenses, verbs put an **epsilon** ($\dot{\varepsilon}$ -) first letter to indicate a past tense. This is called an **augment**. If a verb already begins with an alpha or an epsilon, then this combines with the augment, and its imperfect or weak aorist tense will begin with an **eta** ($\dot{\eta}$ -), which represents the long "e" sound. For example, the imperfect active tense of $\dot{\alpha}\nu\alpha\gamma\kappa\alpha\zeta\omega$ I force would be $\dot{\eta}$ - $\nu\alpha\gamma\kappa\alpha\zeta$ - $o\nu$ I was forcing rather than the form $\dot{\underline{\varepsilon}\alpha}$ - $\nu\alpha\gamma\kappa\alpha\zeta$ - $o\nu$.

Active verbs with strong aorists, like $\dot{\epsilon}\lambda\alpha\beta\sigma V I$ took, the strong aorist of $\lambda\alpha\mu\beta\alpha\nu\omega I$ take, change endings like $\dot{\epsilon}\lambda\nu\sigma\nu$, the imperfect of $\lambda\nu\omega$.

Active infinitives

present	to set free (<i>continuous</i>)	λυειν
future	to set free (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)	λυσειν
weak aorist	to set free (single action)	λυσαι
strong aorist	to take (single action)	λαβειν

Active imperatives

present	set free! (continuous)	sing 2 $\lambda \upsilon \varepsilon$	plur 2 $\lambda \upsilon \varepsilon \tau \varepsilon$
weak aorist	set free! (single action)	sing 2 $\lambda \upsilon \sigma \sigma v$	plur 2 $\lambda \upsilon \sigma \alpha \tau \varepsilon$
strong aorist	take! (single action)	sing 2 $\lambda \alpha \beta \varepsilon$	plur 2 $\lambda \alpha \beta \varepsilon \tau \varepsilon$

Active participles

present	setting free	λυων, λυουσα, λυον	(stem $\lambda vov\tau$ -)
future	about to set free	λυσων, λυσουσα, λυσον	(stem $\lambda \upsilon \sigma o v \tau$ -)
weak aorist	having set free	λυσας, λυσασα, λυσαν	(stem $\lambda \upsilon \sigma \alpha \nu \tau$ -)
strong aorist	having taken	λαβων, λαβουσα, λαβον	(stem $\lambda \alpha \beta o \nu \tau$ -)

Passive voice of regular verbs

λυομαι I am set free

	present I am released	future I shall be released	imperfect I was released	weak aorist I was released
singular				
1st	λυομαι	λυθησομαι	ἐλυομην	ἐλυθην
2nd	λυει/ - η	λυθησει/ -η	ἐλυου	ἐλυθης
3rd	λυεταί	λυθησεταί	έλυετο	ἐλυθη
plural				
1st	λυομεθα	λυθησομεθα	ἐλυομεθα	ἐλυθημεν
2nd	λυεσθε	λυθησεσθε	ἐλυεσθε	ἐλυθητε
3rd	λυονται	λυθησονται	ἐλυοντο	ἐλυθησαν

To form their imperfect and weak a orist tenses, verbs put an **epsilon** (\dot{e} -) first letter to indicate a past tense. This is called an **augment**. If a verb already begins with an alpha or an epsilon, then this combines with the augment, and its imperfect or weak aorist tense will begin with an **eta** ($\dot{\eta}$ -), which represents the long "e" sound. For example, the imperfect passive tense of $\dot{\alpha}\nu\alpha\gamma\kappa\alpha\zeta\omega$ I force would be $\dot{\eta}$ - $\nu\alpha\gamma\kappa\alpha\zeta$ - $o\mu\eta\nu$ I was forced (to do X) rather than the form $\dot{\underline{e}\alpha}$ - $\nu\alpha\gamma\kappa\alpha\zeta$ - $o\mu\eta\nu$.

To express "by" after a passive verb, $\dot{\upsilon}\pi\sigma$ (+ *genitive*) is used if referring to a **living** thing, and the *dative* case is used by itself if referring to a **non-living** thing.

Passive infinitives

present	to be set free (continuous)	λυεσθαι
future	to be set free (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)	λυθησεσθαι
weak aorist	to be set free (single action)	λυθηναι

Passive imperatives

These are not required for GCSE.

Passive participles

present	being set free	λυομενος, -η, -ον	
future	about to set free	λυθησομενος, -η, -ον	
weak aorist	having been set free	λυθεις, λυθεισα, λυθεν	(stem $\lambda \upsilon \theta \varepsilon v \tau$ -)

Middle voice of regular verbs

λυομαι I ransom

	present	future	imperfect	weak aorist
	I ransom	I shall ransom	I was ransoming	I ransomed
singular				
1st	λυομαι	λυσομαι	ἐλυομην	<i>ἐλυσαμην</i>
2nd	λυει/ - η	λυσει/ -η	έλυου	ἐλυσω
3rd	λυεται	λυσεται	έλυετο	<i>έλυσατο</i>
plural				
1st	λυομεθα	λυσομεθα	<i>ἐλυομεθα</i>	<i>ἐλυσαμεθα</i>
2nd	λυεσθε	λυσεσθε	ἐλυεσθε	<i>ἐλυσασθε</i>
3rd	λυονται	λυσονται	έλυοντο	<i>ἐλυσαντο</i>

Middle verbs with strong aorists, like $\dot{\alpha}\phi_{i\kappa}\rho_{\mu\eta\nu} I$ arrived, the strong aorist of $\dot{\alpha}\phi_{i\kappa\nu}\rho_{\mu\alpha}I$ arrive, change endings like $\dot{\epsilon}\lambda\nu\rho_{\mu\eta\nu}$, the imperfect middle of $\lambda\nu\rho_{\mu\alpha}I$.

The present and imperfect middle tenses are identical to their passive counterparts. However, verbs in the middle voice are **never** followed by $\dot{\upsilon}\pi o$ (+ *genitive*) meaning "by". They either take a direct object with them, e.g. $\lambda \upsilon o \mu \alpha i \tau \sigma v \alpha i \chi \mu \alpha \lambda \omega \tau \sigma v I$ ransom the prisoner, or a preposition, e.g. $\pi o \rho \varepsilon \upsilon o \mu \alpha i \pi \rho \sigma s$ to $\dot{\sigma} \rho \sigma s I$ am marching towards the mountain.

Middle infinitives

present	to ransom (<i>continuous</i>)	λυεσθαι
future	to ransom (after έλπιζω and μ ελλω)	λυσεσθαι
weak aorist	to ransom (single action)	λυσασθαι
strong aorist	to arrive (single action)	ἀφικεσθαι

Middle imperatives

present	ransom! (continuous)	sing 2 $\lambda \upsilon o \upsilon$	plur 2 $\lambda \upsilon \varepsilon \sigma \theta \varepsilon$
weak aorist	ransom! (single action)	sing 2 $\lambda \upsilon \sigma \alpha \imath$	plur 2 $\lambda \upsilon \sigma \alpha \sigma \theta \varepsilon$
strong aorist	arrive! (single action)	sing 2 ἀφικου	plur 2 $\dot{\alpha}\phi\iota\kappa\varepsilon\sigma\theta\varepsilon$

Middle participles

present	ransoming	λυομενος, -η, -ον
future	about to ransom	λυσομενος, -η, -ον
weak aorist	having ransomed	λυσαμενος, -η, -ον
strong aorist	having arrived	ἀφικομενος, -η, -ον

Subjunctive

The subjunctive is easily recognised by its trademark long vowels η and ω .

Present

active	middle/ passive	εἰμι I am
λυ-ω	λυ-ωμαι	$\dot{\omega}$
λυ-ης	$\lambda \upsilon - \eta$	ήs
$\lambda \upsilon$ - η	λυ-ηται	$\dot{\eta}$
λυ-ωμεν	λυ-ωμεθα	ώμεν
λυ-ητε	$\lambda \upsilon - \eta \sigma \theta \varepsilon$	ήτε
$\lambda \upsilon$ - $\omega \sigma \iota(v)$	λυ-ωνται	<i>ἀσι(ν</i>)

Weak aorist

active	middle	passive
$\lambda \upsilon$ - $\sigma \omega$	λυ-σωμαι	$\lambda \upsilon$ - $ heta \omega$
λυ-σης	$\lambda \upsilon$ - $\sigma \eta$	λυ-θης
λυ-ση	λυ-σηται	λυ-θη
λυ-σωμεν	λυ-σωμεθα	λυ-θωμεν
λυ-σητε	λυ-σησθε	λυ-θητε
$\lambda \upsilon - \sigma \omega \sigma \iota(v)$	λυ-σωνται	$\lambda \upsilon - \theta \omega \sigma \iota(v)$

Strong aorist

The examples used are $\lambda \alpha \mu \beta \alpha \nu \omega I$ take, capture (aorist active $\dot{\epsilon} \lambda \alpha \beta \sigma \nu$, aorist passive $\dot{\epsilon} \lambda \eta \phi \theta \eta \nu$) and $\dot{\alpha} \phi \kappa \nu \epsilon \sigma \mu \alpha I$ arrive (aorist $\dot{\alpha} \phi \kappa \sigma \mu \eta \nu$)

active	middle	passive
λαβ-ω	ἀφικ-ωμαι	λ η ϕ θ- ω
λαβ-ης	ἀφικ-η	ληφθ-ης
$\lambda \alpha \beta - \eta$	ἀφικ-ηται	$\lambda\eta\phi heta$ - η
λαβ-ωμεν	ἀφικ-ωμεθα	ληφθ-ωμεν
λαβ-ητε	ἀφικ-ησθε	ληφθ-ητε
$\lambda \alpha \beta$ -ωσι(ν)	ἀφικ-ωνται	λ η ϕ θ- ω σι(ν)

Optative

The optative is easily recognised by its trademark diphthongs o_i , α_i and ε_i .

Present

active	middle/ passive	εἰμι Ι am
λυ-οιμι	$\lambda \upsilon$ - $o \mu \eta v$	εἰην
λυ-οις	λυ-010	είης
λυ-οι	λυ-οιτο	εἰη
λυ-οιμεν	λυ-οιμεθα	είμεν
λυ-οιτε	λυ-οισθε	είτε
λυ-οιεν	λυ-οιντο	<i>ะเํะง</i>

Weak aorist

active	middle	passive
λυσ-αιμι	$\lambda \upsilon \sigma$ -αιμην	$\overline{\lambda}$ υ $ heta$ -ειην
λυσ-αις/ -ειας	λυσ-αιο	λυθ-ειης
λυσ-αι/ -ειε(ν)	λυσ-αιτο	λυθ-ειη
λυσ-αιμεν	λυσ-αιμεθα	λυθ-ειμεν
λυσ-αιτε	λυσ-αισθε	λυθ-ειτε
λυσ-αιεν/ -ειαν	λυσ-αιντο	λυθ-ειεν

Strong aorist

The examples used are $\lambda \alpha \mu \beta \alpha v \omega I$ take, capture (aorist active $\dot{\epsilon} \lambda \alpha \beta \sigma v$, aorist passive $\dot{\epsilon} \lambda \eta \phi \theta \eta v$) and $\dot{\alpha} \phi \kappa v \epsilon \sigma \mu \alpha I$ arrive (aorist $\dot{\alpha} \phi \kappa \sigma \mu \eta v$).

active	middle	passive
λαβ-οιμι	ἀφικ-οιμην	ληφθ-ειην
λαβ-015	ἀφικ-οιο	ληφθ-ειης
λαβ-0ι	ἀφικ-οιτο	ληφθ-ειη
λαβ-οιμεν	ἀφικ-οιμεθα	ληφθ-ειμεν
λαβ-οιτε	ἀφικ-οισθε	ληφθ-ειτε
λαβ-οιεν	ἀφικ-οιντο	$\lambda\eta\phi heta$ -ειεν

Contracted verbs in $-\alpha \omega$ – active voice

τιμαω I honour

			present			imperfect		
1st	singula	ar	$ au\mu\omega$			ἐτιμων		
2nd	singula	ar	τιμας			έτιμας		
3rd	singula	ar	τιμα			ἐτιμα		
1st	plural		τιμωμεν			ἐτιμωμεν		
2nd	plural		τιματε			έτιματε		
3rd	plural		τιμωσι(ν)			ἐτιμων		
future	active		τιμησω			weak aorist	t active	ἐτιμησα
Activ	e infin	itives						
preser	nt	to hone	our (<i>continuous</i>	s)		τιμο	ίV	
future	•	to hone	our (after ἐλπιζ	ω and μ	ιελλω)	τιμη	σειν	
weak	aorist	to hone	our (single activ	on)		τιμη	σαι	
Activ	e impe	erative	26					
preser	-		r! (<i>continuous</i>)		sing 2	τιμα	nlur 2	τιματε
-			r! (single action		-	τιμησον		τιματε τιμησατε
weak	aurist	nonou	1. (single action	()	sing 2	πμησον	piùi 2	ιμησαιε
Active participles								
preser	-	honou		τιμων.	τιμωσ	α, τιμων	(stem	τιμωντ-)
future			to honour	•	•	υσα, -σον	•	τιμησοντ-)
	aorist		g honoured	• •		ασα, -σαν	•	τιμησαντ-)
,, cuir					.,		(Stell	

Contracted verbs in $-\alpha\omega$ – passive and middle voice

		present	imperfect
1st	singular	τιμωμαι	ἐτιμωμην
2nd	singular	τιμα	ἐτιμω
3rd	singular	τιμαται	έτιματο
1st	plural	τιμωμεθα	ἐτιμωμεθα
2nd	plural	τιμασθε	έτιμασθε
3rd	plural	τιμωνται	έτιμωντο
future	e passive	τιμηθησομαι	weak aorist passive ἐτιμηθην
future	e middle*	πειρησομαι I will try	weak aorist middle* ἐπειρησαμην I tried

τιμωμαι (passive) I am honoured

* middle verbs have identical present and imperfect tenses to their passive counterparts. The middle $-\alpha\omega$ verbs that you need to know for GCSE are $\kappa\tau\alpha\circ\mu\alpha\iota I$ obtain, get, $\pi\epsilon\iota\rho\alpha\circ\mu\alpha\iota I$ try and $\chi\rho\alpha\circ\mu\alpha\iota I$ use.

Passive infinitives

present	to be honoured (continuous)	τιμασθαι
future	to be honoured (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)	τιμηθησεσθαι
weak aorist	to be honoured (single action)	τιμηθηναι

Middle infinitives (using $\pi \epsilon \iota \rho \alpha o \mu \alpha \iota I try$)

present	to try (continuous)	πειρασθαι
future	to try (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)	πειρησεσθαι
weak aorist	to try (single action)	πειρασθαι

Passive participles

present	being honoured	τιμωμενος, - η , -ον
future	about to be honoured	τιμηθησομενος, -η, -ον
weak aorist	having been honoured	τιμηθεις, -θεισα, -θεν
		(stem $\tau \mu \eta \theta \varepsilon \nu \tau$ -)

Middle participles (using $\pi \epsilon \iota \rho \alpha o \mu \alpha \iota I try$)

present	trying	πειρωμενος, -η, -ον
future	about to try	πειρησομενος, -η, -ον
weak aorist	having tried	πειρησαμενος, -η, -ον

Contracted verbs in $-\alpha\omega$ – subjunctive

$\tau\mu\alpha\omega$ I honour

Present

active	middle/ passive
τιμω	τιμωμαι
τιμας	$ au\mu lpha$
τιμα	τιμαται
τιμωμεν	τιμωμεθα
τιματε	τιμασθε
τιμωσι(ν)	τιμωνται

Weak aorist

The middle example used is $\pi \epsilon i \rho \alpha o \mu \alpha i$ (aor. $\dot{\epsilon} \pi \epsilon i \rho \alpha \sigma \alpha \mu \eta v$) *I try*. The other middle verbs in $-\alpha \omega$ verbs that you need to know for GCSE are $\kappa \tau \alpha o \mu \alpha i$ (aor. $\dot{\epsilon} \kappa \tau \eta \sigma \alpha \mu \eta v$) *I obtain, get* and $\chi \rho \alpha o \mu \alpha i$ (aor. $\dot{\epsilon} \chi \rho \eta \sigma \alpha \mu \eta v$) *I use*.

active	middle	passive
$ au\mu\eta$ - $\sigma\omega$	πειρα-σωμαι	τιμη- $ heta \omega$
τιμη-σης	πειρα-ση	τιμη-θης
τιμη-ση	πειρα-σηται	$ au\mu\eta$ - $ heta\eta$
τιμη-σωμεν	πειρα-σωμεθα	τιμη-θωμεν
τιμη-σητε	πειρα-σησθε	τιμη-θητε
τιμη-σωσι(ν)	πειρα-σωνται	τιμη-θωσι(ν)

Strong aorist

The example used is $\delta \rho \alpha \omega$ (a orist $\epsilon i \delta \delta v$) I try.

active

ίδ-ω ίδ-ης ίδ-η ίδ-ωμεν ίδ-ητε ίδ-ωσι(ν)

Contracted verbs in $-\alpha\omega$ – optative

$\tau\mu\alpha\omega$ I honour

Present

active	middle/ passive
τμφην	τιμφμην
τιμφης	τιμφο
τιμφη	τιμφτο
τιμφμεν	τιμφμεθα
τιμφτε	τιμφσθε
τιμφεν	τιμφντο

Weak aorist

The middle example used is $\pi \epsilon i \rho \alpha o \mu \alpha i I try$.

active	middle	passive
τιμησ-αιμι	πειρασ-αιμην	τιμηθ-ειην
τιμησ-αις/ -ειας	πειρασ-αιο	τιμηθ-ειης
τιμησ-αι/ -ειε(ν)	πειρασ-αιτο	τιμηθ-ειη
τιμησ-αιμεν	πειρασ-αιμεθα	τιμηθ-ειμεν
τιμησ-αιτε	πειρασ-αισθε	τιμηθ-ειτε
τιμησ-αιεν/ -ειαν	πειρασ-αιντο	τιμηθ-ειεν

Strong aorist

The example used is $\delta\rho\alpha\omega$ (a rist $\epsilon i\delta\sigma v$) I try.

active

ἰδ-οιμι ἰδ-οις ἰδ-οι ἰδ-οιμεν ἰδ-οιτε ἰδ-οιτε ἰδ-οιεν

Contracted verbs in $-\varepsilon\omega$ – active voice

φιλεω Ι love

		present	imperfect	
1st	singular	φιλω	ἐφιλουν	
2nd	singular	φιλεις	ἐφιλεις	
3rd	singular	φιλει	ἐφιλει	
1st	plural	φιλουμεν	ἐφιλουμεν	
2nd	plural	φιλειτε	ἐφιλειτε	
3rd	plural	φιλουσι(ν)	ἐφιλουν	
future	e active	$\phi_{l}\lambda\eta\sigma\omega$	weak aorist active	$\dot{\epsilon}\phi$ ιλησα

Active infinitives

present	to love (continuous)	φιλειν
future	to love (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)	φιλησειν
weak aorist	to love (single action)	φιλησαι

Active imperatives

present	love! (continuous)	sing 2 φιλει	plur 2 <i>φιλειτε</i>
weak aorist	love! (single action)	sing 2 ϕ ιλησον	plur 2 $\phi i \lambda \eta \sigma \alpha \tau \varepsilon$

Active participles

present	loving	φιλων, φιλουσα, φιλουν	(stem $φ_i \lambda o \upsilon v \tau$ -)
future	about to love	φιλησων, -σουσα, -σον	(stem $\phi i \lambda \eta \sigma o v \tau$ -)
weak aorist	having loved	φιλησας, -σασα, -σαν	(stem $\phi i \lambda \eta \sigma \alpha v \tau$ -)

Contracted verbs in $-\varepsilon\omega$ – passive and middle voice

1st 2nd 3rd 1st 2nd 3rd	singular singular singular plural plural plural	present φιλουμαι φιλη φιλειται φιλουμεθα φιλεισθε φιλουνται	imperfect ἐφιλουμην ἐφιλου ἐφιλειτο ἐφιλουμεθα ἐφιλεισθε ἐφιλουντο	
future	e passive	φιληθησομαι	weak aorist passive	ἐφιληθην
future	e middle*	-ησομαι	weak aorist middle*	έ σαμην

φιλουμαι (passive) I am loved

* middle verbs have identical present and imperfect tenses to their passive counterparts. The middle $-\varepsilon\omega$ verbs that you need to know for GCSE are $\dot{\alpha}\phi_{i\kappa}v\varepsilon\omega_{\mu}\alpha_{i}$ *I arrive*, $\dot{\upsilon}\pi_{i\sigma}\chi\nu\varepsilon\omega_{\mu}\alpha_{i}$ *I promise* and $\phi_{o\beta}\varepsilon\omega_{\mu}\alpha_{i}$ *I am afraid, fear*. The first two have strong a orist forms: $\dot{\alpha}\phi_{i\kappa}\omega_{\mu}\eta_{\nu}$ *I arrived* and $\dot{\upsilon}\pi\varepsilon\sigma_{\chi}\omega_{\mu}\eta_{\nu}$ *I promised* and to express *I feared, was afraid* $\phi_{o\beta}\omega_{\mu}\alpha_{i}$ uses its imperfect $\dot{\varepsilon}\phi_{o\beta}\omega_{\mu}\eta_{\nu}$.

Passive infinitives

present	to be loved (continuous)	φιλει σ θαι
future	to be loved (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)	φιληθησεσθαι
weak aorist	to be loved (single action)	φιληθηναι

Middle infinitives (using $\dot{\alpha}\phi_{i\kappa}v\varepsilon_{i}\phi_{i\alpha}$ *I arrive*)

present	to arrive (continuous)	ἀφικνεισθαι
future	to arrive (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)	ἀφιξεσθαι
strong aorist	to arrive (single action)	ἀφικεσθαι

Passive participles

present	being loved	φιλουμενος, -η, -ον
future	about to be loved	φιληθησομενος, -η, -ον
weak aorist	having been loved	ϕ ιληθεις, -θεισ $lpha$, -θε $ u$
		(stem ϕ ιλη θ εντ-)

Middle participles (using $\dot{\alpha}\phi_{i\kappa}v\varepsilon_{i}\omega_{i}$ *I arrive*)

present	arriving	ἀφικουμενος, -η, -ον
future	about to arrive	ἀφιξομενος, -η, -ον
strong aorist	having arrived	ἀφικομενος, -η, -ον

Contracted verbs in $-\varepsilon\omega$ – subjunctive

φιλεω Ι love

Present

active	middle/ passive
φιλω	φιλωμαι
φιλης	φιλη
φιλη	φιληται
φιλωμεν	φιλωμεθα
φιλητε	ϕ ιλησ $ heta$ ε
φιλωσι(ν)	φιλωνται

Weak aorist

active	passive
ϕ ιλη- $\sigma\omega$	ϕ ιλη- $ heta \omega$
φιλη-σης	φιλη-θης
φιλη-ση	ϕ ιλη- $ heta$ η
φιλη-σωμεν	φιλη-θωμεν
φιλη-σητε	φιλη-θητε
φιλη-σωσι(ν)	φιλη-θωσι(ν)

Strong aorist

The example used is $\dot{\alpha}\phi_{i\kappa\nu\epsilon}\omega_{\mu\alpha} I$ arrive. The other GCSE middle $-\varepsilon\omega$ verb with a strong aorist is $\dot{\nu}\pi_{i\sigma}\chi\nu\epsilon_{i\sigma}\omega_{\mu\alpha}$ (aor. $\dot{\nu}\pi\epsilon\sigma\chi_{i\sigma}\omega_{\mu}\eta\nu$) *I promise*.

middle

ἀφικ-ωμαι ἀφικ-ῃ ἀφικ-ηται ἀφικ-ωμεθα ἀφικ-ησθε ἀφικ-ωνται

Contracted verbs in - $\varepsilon \omega$ – optative

φιλεω Ι love

Present

active	middle/ passive
φιλοιην	φιλοιμην
φιλοιης	φιλοιο
φιλοιη	φιλοιτο
φιλοιμεν	φιλοιμεθα
φιλοιτε	φιλοι σ θε
φιλοιεν	φιλοιντο

Weak aorist

active	passive
φιλησ-αιμι	φιληθ-ειην
φιλησ-αις/ -ειας	φιληθ-ειης
φιλησ-αι/ -ειε(ν)	φιληθ-ειη
φιλησ-αιμεν	φιληθ-ειμεν
φιλησ-αιτε	φιληθ-ειτε
φιλησ-αιεν/ -ειαν	φιληθ-ειεν

Strong aorist

The example used is $\dot{\alpha}\phi_{i\kappa}v\varepsilon_{i}\phi_{i\alpha}I$ arrive.

middle

ἀφικ-οιμην ἀφικ-οιο ἀφικ-οιτο ἀφικ-οιμεθα ἀφικ-οισθε ἀφικ-οιντο

Irregular verbs

εἰμι I am

	present I am	future I shall be	imperfect I was
singular 1st	είμι	ἐσομαι	$\dot\eta$ or $\dot\eta v$
2nd	εi	$\dot{e}\sigma\varepsilon\iota$ or $\dot{e}\sigma\eta$	ή σθα
3rd plural	ἐστι(ν)	έσται	$\dot{\eta} v$
1st	έσμεν	ἐσομεθα ἐσεσθε	ήμεν
2nd 3rd	ἐστε εἰσι(ν)	ἐσεσθε ἐσονται	ήτε ήσαν

	subjunctive	optative	
singular			
1st	$\dot{\omega}$	είην	
2nd	ņ̀s	εἰην εἰης	
3rd	$\dot{\eta}$	εἰη	
plural	-		
1st	ώμεν	είμεν	
2nd	$\dot{\eta} au arepsilon$	είτε	
3rd	$\dot{\omega}\sigma\iota(v)$	eiev	

Present infinitive Future infinitive	to be to be (after $\dot{\epsilon}\lambda\pi\iota\zeta\omega$ and $\mu\epsilon\lambda\lambda\omega$)		είναι ἐσεσθ	θαι
Present imperative	be!	sing 2 $i\sigma\theta\iota$		plur 2 $\dot{\epsilon}\sigma\tau\epsilon$
Present participle	being	ών, οὐσα, ὀ	V	(stem ovt-)

The 3rd person form of $\hat{ei}\mu$ can be used with a noun in the **dative** case to show possession, for example $\hat{e}\sigma\tau\nu$ oikia $\tau\phi$ kpith the judge has a house (literally there is a house to the judge) or $\tau\sigma\iota\beta$ παισιν $\hat{e}\sigma\tau\iota$ χρηματα the boys have money (literally to the boys is money). The thing being possessed is, however, **never** found first word.

The "other" ɛiµı I shall go

This verb is used for the future tense, present infinitive and present participle of $\dot{\epsilon}\rho\chi\sigma\mu\alpha I go$.

future (I shall go) εἰμι εἰ εἰσι(ν) ἰμεν ἰτε ἰασι(ν)

Present infinitiveto goPresent participlegoing

ίεναι ίων, ίουσα, ίον (stem iovτ-)

οίδα I know

present (I know) οἰδα οἰσθα οἰδε(ν) ἰσμεν ἰστε ἰσασι(ν)

Present infinitive	to know	είδεναι
Present participle	knowing	είδως, είδυια, είδος (stem είδοτ-)

φημι I say

present (I say)	imperfect (I was saying, said)
φημι	ἐφην
$\phi_{\eta}s$	$\dot{e}\phi\eta\sigma hetalpha$
φησι(ν)	ἐφη
φαμεν	ἐφαμεν
φατε	ἐφατε
φασι(ν)	ἐφασαν
Present infinitive to say	φαναι

διδωμι Ι give

future (I shall give) δωσω δωσεις δωσει δωσομεν δωσετε δωσουσι(ν)		aorist (I gave) έδωκα έδωκας έδωκε(ν) έδομεν έδοτε έδοσαν
Present infinitive	to give	δωσειν
Future infinitive	to give	δουναι

βαινω Ι go

The present tense of this verb goes like $\lambda \upsilon \omega$

future (I shall go)		aorist (I went)
βησομαι		ἐβην
βησει/ -η		έβης
βησεταί		$\dot{\epsilon}\beta\eta$
βησομεθα		έβημεν
βησεσθε		έβητε
βησονται		έβησαν
Aorist infinitive	to go	βηναι
Aorist participle	having gone	$\beta \alpha \varsigma$, $\beta \alpha \sigma \alpha$, $\beta \alpha v$ (stem $\beta \alpha v \tau$ -)

<u>Note</u>: compounds of βαινω change in the same way, e.g. $\dot{\alpha}\pi\sigma\beta\alpha\nu\omega I$ go away, fut. $\dot{\alpha}\pi\sigma\beta\eta\sigma\sigma\mu\alpha I$ shall go away, aor. $\dot{\alpha}\pi\varepsilon\beta\eta I$ went away and aor. part. $\dot{\alpha}\pi\varepsilon\beta\alpha\varsigma$ (plural $\dot{\alpha}\pi\varepsilon\beta\alpha\nu\tau\varepsilon\varsigma$) having gone away.

γ ιγνωσκω I know, realise, understand

The present tense of this verb goes like $\lambda \upsilon \omega$

future (I shall know))	aorist (I knew)
γνωσομαι		ἐγνων
γνωσει/ -ῃ		έγνως
γνωσεται		ἐγνω
γνω σ ομεθα		ἐγνωμεν
γνωσεσθε		έγνωτε
γνωσονται		έγνωσαν
Aorist infinitive Aorist participle	to know having known,	γνωναι
_	knowing	$\gamma VOUS$, $\gamma VOUG\alpha$, γVOV (stem $\gamma VOV\tau$ -)